

1 RAPIDS Scaling on Dell EMC PowerEdge Servers

Whitepaper

RAPIDS Scaling on Dell EMC PowerEdge Servers

Abstract

In this project we tested Dell EMC PowerEdge Servers with end to end (E2E) workflow

using New York City - Taxi notebook to accelerate large scale workloads in scale-up and

scale-out solutions using RAPID library from NVIDIA™ and DASK-CUDA for parallel

computing with XGBoost.

February 2020

Revision: 1.1

Issue Date: 2/4/2020

Issue Date:

2/4/2020

2 RAPIDS Scaling on Dell EMC PowerEdge Servers

Revisions

Date Description

2/4/2020 Initial release

Authors

This paper was produced by the following:

Name

Vilmara Sanchez Dell EMC, Advanced Engineering

Bhavesh Patel Dell EMC, Advanced Engineering

Acknowledgements

This paper was supported by the following:

Name

Josh Anderson Dell EMC

Robert Crovella NVIDIA

NVIDIA Account Team NVIDIA

NVIDIA Developer Forum NVIDIA

NVIDIA RAPIDS Dev Team NVIDIA

Dask Development Team Library for dynamic task scheduling https://dask.org

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to

the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© February, 2020 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of

Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without

notice.

https://dask.org/

3 RAPIDS Scaling on Dell EMC PowerEdge Servers

Table of Contents

1 RAPIDS Overview .. 5

1.1 XGBoost ... 6

1.2 Dask for Parallel Computing ... 7

1.3 Why RAPIDS, Dask and XGBoost? .. 8

1.4 New York City (NYC) – Taxi Dataset .. 8

1.5 E2E NYC-Taxi Notebook .. 9

1.6 RAPIDS Memory Manager (RMM) .. 9

2 System Configuration ... 10

3 Results on Single Node .. 11

4 Results on Multi Node on C4140-M .. 13

5 Results with System Profile in “Performance” Mode ... 15

6 Conclusion and Future Work .. 17

A Dell EMC PowerEdge Server Specifications... 18

B Terminology ... 19

C Example; GPU Activity with C4140-M in Multi Node Mode ... 20

D Dask Diagnostic Dashboard ... 22

E NVDashboard – Nvidia GPU Dashboard .. 25

F Environment set up .. 28

G Notebook NYC-Taxi Set Up.. 29

H RAPIDS Multi Node Set Up .. 30

I Bios Settings to Boost Performance ... 31

J Common Errors .. 33

K Technical Resources .. 34

K.1 Related Resources ... 34

4 RAPIDS Scaling on Dell EMC PowerEdge Servers

Executive Summary

Traditional Machine learning workflows often involve iterative and lengthy steps in data preparation,

model training, validating results and tuning models before the final solution can be deployed for

production. This cycle can consume a lot of resources, negatively impacting the productivity of the

developer’s team toward business transformation. In order to accelerate this, NVIDIA released the

Accelerated Data Science pipeline with RAPIDS. It’s a complete ecosystem that integrates multiple

Python libraries with CUDA at the core level and built on CUDA-X AI libraries and other key open-source

projects including Apache Arrow. This ecosystem provides GPU-accelerated software for data science

workflows that maximizes productivity, performance and ROI, at the lowest infrastructure total cost of

ownership (TCO).

In this paper we tested the NYC-Taxi sample notebook (included in the NGC RAPIDS container) and the

NYC Taxi dataset [1] (available from a public Google Cloud Storage bucket) on Dell EMC PowerEdge

servers C4140-M and R940xa with NVIDIA GPUs. We ran multiple tests to cover several configurations

such as single node and multi node as well as storing data on local disk vs using NFS (network file

system). We also investigated how NVIDIA’s implementation of RAPIDS memory manager helps in the

overall speedup. [2].

The main objective is to demonstrate how to speed up machine learning workflows with the RAPIDS

accelerated software stack, increasing performance in terms of productivity and accuracy at a lower

infrastructure cost.

5 RAPIDS Scaling on Dell EMC PowerEdge Servers

1 RAPIDS Overview

RAPIDS is a GPU accelerated data science pipeline, and it consists of open-source software libraries based

on python to accelerate the complete workflow from data ingestion and manipulation to machine learning

training. It does this by:

1. Adopting the columnar data structure called GPU data frame as the common data format across all

GPU-accelerated libraries.

2. Accelerating data science building blocks (such as data manipulation, routines, and machine learning

algorithms) by processing data and retaining the results in the GPU memory.

Figure 1 shows the main software libraries as part of RAPIDS:

• cuDF: Is the GPU DataFrame library with Pandas-like API style for data cleaning and transformation.

It is a single repository containing both the low-level implementation and C/C++ API (LibGDF) and high-

level wrappers and APIs (PyGDF). It allows to convert Pandas DataFrame to GPU DataFrame (Pandas

↔ PyGDF)

• cuML: Suite of libraries with the implementation of machine learning algorithms compatible with

RAPIDS ecosystem; including Clustering, Principal Components Analysis, Linear Regression, Logistic

Regression, XGBoost GBDT, XGBoost Random Forest, K-Nearest Neighbors (KNN), GLM (including

Logistic), Support Vector Machines, among others.

• cuGraph: Library for Graph Analytics

Figure 1. RAPIDS open Source Software. Source: Nvidia

6 RAPIDS Scaling on Dell EMC PowerEdge Servers

Data Processing Evolution:

In a benchmark consisting of aggregating data, the CPU becomes the bottleneck because there is too much

data movement between the CPU and the GPU. So, RAPIDS is focused on the full data science workflow

and keeping data on the GPU (using same memory format as Apache Arrow). As you lower data movement

between CPU & GPU, it leads to faster data processing as shown in Figure 2.

Figure 2. Data Processing Evolution. Source: Nvidia

Pillars of Rapids Performance:

• CUDA Architecture: Massively parallel processing

• NVLink/NVSwitch: High speed connecting between GPUs for distributed algorithms

• Memory Architecture: Large virtual GPU memory, high speed memory

1.1 XGBoost

XGBoost is one of the most popular machine learning packages for training gradient boosted decision trees.

Native cuDF support allows to pass data directly to XGBoost while remaining in GPU memory. Its popularity

relies on its strong history of success on a wide range of problems and for being the winner of several

competitions, increasing the stakeholder confidence in its predictions. However, it has some known

limitations such as the tradeoff of scale out and accuracy and issues with considerable number of

hyperparameters can take long time to find the best solution. Figure 3 shows the average ranking of the

ML algorithms and the XGBoost is one of the leading algorithms.

7 RAPIDS Scaling on Dell EMC PowerEdge Servers

Figure 3. Average ranking of the ML algorithms.

Source: Nvidia/ https://arxiv.org/pdf/1708.05070.pdf

1.2 Dask for Parallel Computing

Dask is a distributed computation scheduler built to scale Python workloads from laptops to supercomputer

clusters. It takes advantage of hardware advancements using a communications framework called

OpenUCX to scale up and out with cuDF (Native integration with Dask + cuDF):

• For intranode data movement, utilizing NVLink and PCIe peer-to-peer communications

• For internode data movement, utilizing GPU RDMA over InfiniBand and RoCE

Figure 4. Dask for Parallel Computing. Source: Nvidia

https://arxiv.org/pdf/1708.05070.pdf

8 RAPIDS Scaling on Dell EMC PowerEdge Servers

1.3 Why RAPIDS, Dask and XGBoost?

There are several reasons to bring together these tools:

• Freedom to execute end-to-end data science & analytics pipelines entirely on GPU

• User-friendly Python interfaces

• Relies on CUDA primitives

• Faster results make tuning parameters more interactive, leading to more accuracy in predictions and

therefore more business value

• Dask provides advanced parallelism for data science pipelines at scale. It works with the existing

Python ecosystem to scale it to multi-core machines and distributed clusters, sharing their syntaxes

• cuML also features multi-GPU and multi-node-multi-GPU operation, using Dask

• XGBoost takes advantage of fast parallel processing with GPUs in both single and multi-node

configurations to reduce training times

1.4 New York City (NYC) – Taxi Dataset

Description:

The yellow taxi trip records include fields capturing pick-up and drop-off dates/times, pick-up and drop-off

locations, trip distances, itemized fares, rate types, payment types, and driver-reported passenger counts.

Source:

The data used in the datasets were collected and provided to the NYC Taxi and Limousine Commission

(TLC) by technology providers authorized under the Taxicab & Livery Passenger Enhancement Programs

(TPEP/LPEP). The trip data was not created by the TLC, and TLC makes no representations as to the

accuracy of these data.

Size:

The dataset used in this project contains historiacal records accumulated and saved on individual monthly

files from 2014 to 2016 (Total: ~64GB), with the below sizes per year:

Figure 5. NYC Taxi Dataset Size (GB)

2014 year
Datset, 26.5

2015 year
Dataset, 21.9

2016 year
Dataset, 15.7

NYC Taxi Dataset Size per Year (GB)

2014 year Datset

2015 year Dataset

2016 year Dataset

9 RAPIDS Scaling on Dell EMC PowerEdge Servers

1.5 E2E NYC-Taxi Notebook

This is an End to End (E2E) notebook example extracted from Nvidia rapids ai/notebooks-contrib GitHub

repo, the workflow consists of three core phases: Extract-Transform-Load (ETL), Machine Learning

Training, and Inference operations performed on the NYC-Taxi dataset. The notebook focuses on

showing how to use cuDF with Dask & XGBoost to scale GPU DataFrame ETL-style operations &

model training out to multiple GPUs on multiple nodes. see below Figure 6. In this notebook we will see

how RAPIDS, Dask, and XGBoost are implemented to work together.

Figure 6. NYC-Taxi Notebook Workflow

1.6 RAPIDS Memory Manager (RMM)

According to Nvidia definition “RAPIDS Memory Manager (RMM) is a central place for all device memory

allocations in cuDF (C++ and Python) and other RAPIDS libraries. In addition, it is a replacement allocator

for CUDA Device Memory (and CUDA Managed Memory) and a pool allocator to make CUDA device

memory allocation / deallocation faster and asynchronous”.

10 RAPIDS Scaling on Dell EMC PowerEdge Servers

2 System Configuration

Test System Hardware:

Servers

• C4140-M

o 4xV100-SXM2-16GB

• R940xa

o 4xV100-PCle-32GB

o 4xV100-PCle-16GB

• Network connection over InfiniBand

• R740xd server hosting the NFS with the dataset for remote data

Test System Software:

• Ubuntu 18.04

Docker CE v19.03+ for Linux distribution

• RAPIDS Version: 0.10.0 - Docker Install

Nvidia Driver: 418.67+

CUDA: 10.1

Note: The systems were tested using RAPIDS via docker NVIDIA GPU Cloud (NGC); the original

notebook requires Google DataProc to access the hosted NYC-Taxi Dataset; to bypass this dependency

we downloaded the dataset locally and update the notebook to read if from a specific path.

Test Configuration:

The tests were conducted using the below variations;

• Using dataset from year 2014 until year 2016, exploring the maximum dataset capacity to be handled

by each server.

• RMM enable and disable

• Single Node [3-4] and Multi Node [5-8]

• Local data and remote data on NFS [9]

• To ensure reproducibility, each server was tested 3 times and calculated the average as the result.

11 RAPIDS Scaling on Dell EMC PowerEdge Servers

3 Results on Single Node
The following session shows the results on single node mode for each server tested.

2014 Year Dataset SATA Data vs NVMe Data:

We started with 2014-year dataset (26.5GB) using PowerEdge servers C4140-M with NVIDIA V100-SXM2-

16GB and R940xa with NVIDIA V100PCle-16GB and V100PCle-32GB. The results shown below were

conducted with the feature RMM disabled. See Figure 7

Figure 7. Performance on Dell EMC PowerEdge Servers in Single Node

RMM enable vs RMM disable:

On the server with 32GB device memory PowerEdge R940xa (4xV100PCle-32GB) with 2014-year dataset,

the RMM feature was tested on enable and disable mode; RMM enable yielded the shortest total E2E time

(~101 seconds), 19% faster than its configuration with RMM disable (~124 seconds). See Figure 8.

Figure 8. Performance on Server R940xa with RMM enable vs RMM disable

12 RAPIDS Scaling on Dell EMC PowerEdge Servers

Remote data on NFS versus Local data on SATA:

Another aspect to explore was the effect of using remote data on NFS versus local data on SATA device.

To do so, we tested on the server C4140-M 4xV100-SXM2-16GB with local data 2014-year on SATA drive,

which was just 3% faster than remote data on NFS. See Figure 9

Figure 9. Performance on Server C4140-M Comparing Remote Data on NFS vs Local Data on SATA

Increasing the Dataset Size:

As we mentioned on the test configuration, the dataset size was gradually increased on a year basis and
in this section we added 2015-year as wells as 2016-year dataset to test each server’s compute

capability.

Server PowerEdge R940xa (4xV100PCle-32GB) with RMM enable handled 48.4GB data size
Server PowerEdge R940xa (4xV100PCle-32GB) with RMM enable handled up to 58.8 GB of data size

Figure 10. Largest Dataset Handled by Server R940xa

13 RAPIDS Scaling on Dell EMC PowerEdge Servers

4 Results on Multi Node on C4140-M

To run RAPIDS in multi-node mode we used Dask CUDA to extend Dask distributed with GPU support.

There are different methods to set up the multi-node mode depending on the target cluster, for more

options see Dask documentation as reference [5-8]. In this case we will set up the cluster with 2 nodes:

• The primary compute node C4140-M server hosting the dask-scheduler

• Number of GPU's (workers) in primary compute node: 4

• Jupyter notebook on the primary node

• A secondary compute node C4140-M server with additional 4 GPU’s (workers)

• Total GPU's in the cluster: 8

• R740xd server hosting the NFS with the dataset

Scale Out RAPIDS on C4140-M versus C4140-M Single Node:

The server C4140-M 4xV100-SXM2-16GB in multi node was tested first with 2014-year dataset only, the

results were compared with its performance in single node to determine the workflow acceleration (with

RMM disable in both cases); in multi node mode the system speeded up around 55% faster than single

node. The main acceleration was reflected at the ETL phase, 99.5 seconds versus 50.4 seconds. See

Figure 11 below.

Figure 11. Performance on Server C4140-M in Single Node vs Multi Node

Scale Out RAPIDS on C4140-M versus R940xa Single Node:

Since the server C4140-M in multi node has total device capacity of 128GB, we compared it versus the

server R940xa in Single Node which has the same total device capacity of 128GB; in this case the

servers were configured with RMM enable. We found that although both systems have the same total

device capacity, the C4140-M multi node performed 58% faster than R940xa single node. The faster

speed-up times is based on the number of GPUs allocated i.e. C4140-M with 8x GPUs in multi-node vs

R940xa with 4x GPUs. See Figure 12.

https://github.com/rapidsai/dask-cuda

14 RAPIDS Scaling on Dell EMC PowerEdge Servers

Figure 12. Performance on Server C4140-M in Multi Node vs R940xa in Single Node

Scale Out RAPIDS on C4140-M | Faster Performance on Largest Dataset:

In this section, we tested the system C4140-M 4xV100-SXM2-16GB in multi node, increasing the data

size gradually by year and month. The system has the capacity to handle up to 51.7GB data size, the

highest dataset processing capacity (2014-2015-2016 Jan-Feb dataset with 51.7GB) in the shortest total

E2E time (126 seconds). Figure 13 summarize the maximum data processing capacity exposed for each

server tested on this project. The winner was C4140-M in multi node.

Figure 13. Largest Dataset Size (GB) Supported by each Server in Single Node and Multi Node

15 RAPIDS Scaling on Dell EMC PowerEdge Servers

5 Results with System Profile in “Performance” Mode
In order to boost the performance, the System Profile was changed under the Bios Settings from

“Performance per Watt (DAPC)”, the default configuration used to run the previous tests, to “Performance”

mode; as a result, the performance was boosted between 7% - 9% in terms of Total E2E seconds. For

instance, the E2E on PowerEdge C4140-M-4xV100-SXM2-16GB in Multi Node went from 59 seconds to

55 seconds (7% faster), see below Figure 14:

Figure 14. C4140-M-4xV100-SXM2-16GB Multi Node | Performace vs Performance per Watt mode

The servers C4140-M-4xV100-SXM2-16GB and PowerEdge R940xa (4xV100PCle-32GB) were tested on

performance mode also and single node, presenting 9% of performance boosting each, see Figure 15

and Figure 16:

Figure 15. C4140-M-4xV100-SXM2-16GB | Single Node | Performace vs Performance per Watt mode

16 RAPIDS Scaling on Dell EMC PowerEdge Servers

Figure 16. R940xa (4xV100PCle-32GB) | Single Node | Performace vs Performance per Watt

17 RAPIDS Scaling on Dell EMC PowerEdge Servers

6 Conclusion and Future Work

We have shown how Dell EMC PowerEdge servers with NVIDIA GPUs can be used to accelerate your data

science pipeline with RAPIDS. We have compared performance using both NVIDIA NVLINK & PCIE GPUs

using scale-up and scale-out server’s solutions using different storage configurations.

Main highlights:

o Using NYC-taxi 2014 dataset, server C4140-M 4V100-SXM2-16GB in Multi Node mode

(8x16=128GB) with RMM enable yielded the shortest total E2E time (~59 seconds), 58% faster than

server R940 4xV100PCle-32GB Single Node (~101 seconds)

o C4140-M 4xV100-SXM2-16GB with local data on SATA drive was 3% faster than remote data on

NFS

o System Profile Settings in “Performance” mode yield ~7%-9% in boost performance

The experiments run in this paper show the basic method to deploy RAPIDS with DASK on multiple

nodes. As alternative to automate the deployment for multi-node in production environments, the tests

can be conducted using a cluster resource manager such as SLURM, PBS, Kubernetes, Yarn among

others.

Dell EMC PowerEdge Server Specifications

18 RAPIDS Scaling on Dell EMC PowerEdge Servers

A Dell EMC PowerEdge Server Specifications

The below table shows the technical specifications of the servers used in this paper

 Dell EMC PowerEdge Servers

Component
 C4140-M

(Primary Node)

C4140-M

(Secondary Node)

R940xa-16GB

Single Node

R940xa-32GB
Single Node

Server
Dell EMC PowerEdge
C4140 Conf. M

Dell EMC PowerEdge
C4140 Conf. M

R940xa R940xa

CPU Model
Intel(R) Xeon(R) Gold
6148 CPU @ 2.40GHz

Intel(R) Xeon(R) Gold
6148 CPU @ 2.40GHz

Intel(R) Xeon(R)
Platinum 8180M CPU @
2.50GHz

Intel(R) Xeon(R) Gold
6230 CPU @ 2.10GHz

System Memory 512 GB 256 GB 3022 GB 3022 GB

DIMM
64GB
M386A8K40BMB-CPB

16GB
M393A2K43BB1-CTD

64GB
HMAA8GL7AMR4N-VK

64GB
M386A8K40BM2-CTD

Storage
1)SATA Disk (M.2)
2) NVMe-PCIe adapter

1) SATA Disk (M.2)
2) NVMe-PCIe adapter

PCIe Data Center SSD
MegaRAID SAS-3 3108
[Invader]

GPUs 4 x V100-SXM2-16GB 4 x V100-SXM2-16GB 4 x V100-PCle-16GB 4 x V100-PCle-32GB

Total GPU memory 64GB 64GB 64GB 128GB

Nvidia Driver 418.87 418.67 418.56 418.67

CUDA 10.1 10.1 10.1 10.1

OS Ubuntu 18.04.1 Ubuntu 16.04.6 LTS Ubuntu 18.04.2 LTS Ubuntu 18.04.2 LTS

Kernel
GNU/Linux 4.15.0-66-
generic x86_64

GNU/Linux 4.4.0-143-
generic x86_64

GNU/Linux 4.15.0-51-
generic x86_64

GNU/Linux 4.15.0-66-
generic x86_64

Terminology

19 RAPIDS Scaling on Dell EMC PowerEdge Servers

B Terminology

RAPIDS: Suite of software libraries, built on CUDA-X AI, that gives the freedom to execute end-to-end

data science and analytics pipelines entirely on GPUs

End to End workflow: Data science pipeline that includes the three phases of ETL (Extract, Transform,

Load), data conversion, and training

Dask: Open source freely available that provides advanced parallelism for analytics. It is developed in

coordination with other community projects like Numpy, Pandas, and Scikit-Learn

XGBoost: Open-source software library which provides a gradient boosting framework for C++, Java,

Python, R, and Julia. It works on Linux, Windows, and macOS

Docker mounted volume: An existing directory on the host that is “mounted” to be available inside the

container, useful for sharing files between the host and the container

Cluster: Group of computers communicating through fast interconnection

Node: Group of processors communicating through shared memory

Socket: Group of cores communicating through shared cache

Core: Group of functional units communicating through registers

Pipeline: Sequence of instructions sharing functional units

Threads: The smallest sequence of programmed instructions that can be managed independently by a

scheduler, which is typically a part of the operating system

Dask-scheduler: Coordinates and execute the task graphs on parallel hardware

Dask-worker: Computes tasks as directed by the schedules, stores and serves computed results to other

workers or clients

Dask-cuda: Allows deployment and management of Dask workers on CUDA-enabled systems

Diagnostic dashboard: Interactive dashboard containing several plots and tables with live information

about task runtimes, communication, statistical profiling, load balancing, memory use, and so on.

Bokeh: Interactive visualization library that targets modern web browsers for presentation

Example; GPU Activity with C4140-M in Multi Node Mode

20 RAPIDS Scaling on Dell EMC PowerEdge Servers

C Example; GPU Activity with C4140-M in Multi Node Mode

GPU Activity on C4140-M in Multi Node Mode with RMM enable

Example; GPU Activity with C4140-M in Multi Node Mode

21 RAPIDS Scaling on Dell EMC PowerEdge Servers

GPU Activity on C4140-M in Multi Node Mode with RMM disable

Dask Diagnostic Dashboard

22 RAPIDS Scaling on Dell EMC PowerEdge Servers

D Dask Diagnostic Dashboard

Dask diagnostic dashboard helps to understand the performance of the code running on the cluster

among each worker, please watch the video “Dask Dashboard walkthrough” for detailed explanation of

each dashboard page [12].

Task and thread activities among the workers over the time. The workers are identified with horizontal

bars, in this example there are four workers

Dashboard – Status page

Dask Diagnostic Dashboard

23 RAPIDS Scaling on Dell EMC PowerEdge Servers

Profile page allows to inspect the code performance at the finest granularity level, each horizontal bar
corresponds to a function

Dashboard – Profile page

The System page provides plots with information about the resource utilization when the scheduler runs

processes

Dashboard – System page

Dask Diagnostic Dashboard

24 RAPIDS Scaling on Dell EMC PowerEdge Servers

Workers page provides information about all the workers running on the cluster

Dashboard – Workers page

Info page provides more information about each worker running on the cluster. It provides log files for

each worker and the log file for the scheduler; allowing to inspect a particular task, its dependencies,
memory resources used, and its progress through the scheduler

Dashboard – Info page

NVDashboard – Nvidia GPU Dashboard

25 RAPIDS Scaling on Dell EMC PowerEdge Servers

E NVDashboard – Nvidia GPU Dashboard

As an alternative monitory tool, NVDashboard is an open-source package for the real-time visualization of

NVIDIA GPU metrics on interactive Jupyter environments. The dashboards use pynvml to access GPU

information attached to the machine and display the plots in Jupyter Lab environment.

Instructions to install NVDashboard on docker

Run the docker image:
$ docker run --gpus all --rm -it --net=host -p 8888:8888 -p 8787:8787 -p 8786:8786

rapidsai/rapidsai:0.10-cuda10.1-runtime-ubuntu18.04

Once inside the docker, add GPU DashBoards with the below commands:

$ pip install jupyterlab-nvdashboard

$ jupyter labextension install jupyterlab-nvdashboard

Start Jupyter notebook, it will run at the designated output IP/Port
$ bash utils/start-jupyter.sh

Once the NVDashboard is installed, the “System Dashboard” will be visible at the left side of the Jupyter-

Lab environment, see below some plot samples

NVDashboard – Nvidia GPU Dashboard

26 RAPIDS Scaling on Dell EMC PowerEdge Servers

GPU Dashboards

GPU Utilization

GPU Resources

NVDashboard – Nvidia GPU Dashboard

27 RAPIDS Scaling on Dell EMC PowerEdge Servers

PCle Throughput

Machine Resources

Environment set up

28 RAPIDS Scaling on Dell EMC PowerEdge Servers

F Environment set up

In this section we explain the steps on how to install RAPIDS through the docker from NVIDIA GPU Cloud

(NGC), download the NYC-taxi dataset, and pull the notebooks repo [13]

1. Review the below prerequisites before running the tests:

a. NVIDIA Pascal™ GPU architecture or better

b. CUDA 9.2 or 10.0+ compatible NVIDIA driver

c. Ubuntu 16.04/18.04 or CentOS 7

d. Docker CE v19.03+ for Linux distribution

2. Download and the NYC-taxi dataset to the folder of your choice at the local host, for example:
$ mkdir rapids cd rapids

$ mkdir data cd data

$ wget --no-check-certificate https://storage.googleapis.com/anaconda-public-

data/nyc-taxi/csv/2014/yellow_tripdata_2014-{01..12}.csv

$ wget --no-check-certificate https://storage.googleapis.com/anaconda-public-

data/nyc-taxi/csv/2015/yellow_tripdata_2015-{01..12}.csv

$ wget --no-check-certificate https://storage.googleapis.com/anaconda-public-

data/nyc-taxi/csv/2016/yellow_tripdata_2016-{01..12}.csv

3. Pull the notebooks-contrib repo inside the container using wget or to the local host and use a docker

volume mount to /rapids/contrib/:
$ cd rapids

$ git clone https://github.com/rapidsai/notebooks-contrib

Note: Use the dataset and notebooks-contrib paths as the mounted volumes, as per the instructions

running docker images. This will map folders from the host operating system to the container OS in the

/rapids/ directories

4. Pull the selected docker image from NGC. To explore the full tag list for all available images visit:
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:0.10-cuda10.1-runtime-ubuntu18.04

5. Start the Container:

$ docker run --gpus all

--rm -it \

--net=host \

-p 8888:8888 \

-p 8787:8787 \

-p 8786:8786 \

-v /rapids/notebooks-contrib/:/rapids/notebooks/contrib/ \

-v /rapids/data/:/rapids/data/ \

nvcr.io/nvidia/rapidsai/rapidsai:0.10-cuda10.1-runtime-ubuntu18.04

https://storage.googleapis.com/anaconda-public-data/nyc-taxi/csv/2014/yellow_tripdata_2014-%7b01..12%7d.csv
https://storage.googleapis.com/anaconda-public-data/nyc-taxi/csv/2014/yellow_tripdata_2014-%7b01..12%7d.csv
https://storage.googleapis.com/anaconda-public-data/nyc-taxi/csv/2015/yellow_tripdata_2015-%7b01..12%7d.csv
https://storage.googleapis.com/anaconda-public-data/nyc-taxi/csv/2015/yellow_tripdata_2015-%7b01..12%7d.csv
https://storage.googleapis.com/anaconda-public-data/nyc-taxi/csv/2016/yellow_tripdata_2016-%7b01..12%7d.csv
https://storage.googleapis.com/anaconda-public-data/nyc-taxi/csv/2016/yellow_tripdata_2016-%7b01..12%7d.csv
https://github.com/rapidsai/notebooks-contrib

Notebook NYC-Taxi Set Up

29 RAPIDS Scaling on Dell EMC PowerEdge Servers

G Notebook NYC-Taxi Set Up

See below the steps to start the notebook server and the notebook example

1. Once within the container, start the Notebook Server on the host machine (this will run JupyterLab on

port 8888 on the host machine):
(rapids) root@container:/rapids/notebooks# bash utils/start-jupyter.sh

Note: To run JupyterLab on a different port, edit and modify the start-jupyter.sh file as below adding the

flag --port=<another_port>, and re-start the Notebook Server:

jupyter-lab --allow-root --ip=0.0.0.0 --no-browser --NotebookApp.token='' --port=<another_port>

2. To access Jupyter, open a browser with the url address:
http://<IP_local_host>:<port>/

The nyc-taxi notebook can be found in the following directory:

rapids/notebooks/contrib/intermediate_notebooks/E2E/taxi/NYCTaxi_E2E.ipynb

3. Modify the NYCTaxi_E2E.ipynb notebook and provide the data path in the volume mounted

previously:
base_path = '/home/dell/rapids/data/nyc-taxi/'

4. To run the data set on a specific year, proceed to comment the cells aimed to increase the data size

and limit the DataFrame to that year, example:

Limit the dataset to a specific year:
taxi_df = dask.dataframe.multi.concat([df_2015])

Include multiple years:

taxi_df = dask.dataframe.multi.concat([df_2014, df_2015, df_2016])

RAPIDS Multi Node Set Up

30 RAPIDS Scaling on Dell EMC PowerEdge Servers

H RAPIDS Multi Node Set Up

1. Run as Docker container on each node

On each node, go inside the RAPIDS docker image and start the multi-node configuration as

described in the next steps. Below is the command example to go within the docker:

docker run --runtime=nvidia

--rm -it --net=host

-p 8888:8888

-p 8787:8787

-p 8786:8786

-v /home/rapids/notebooks-contrib/:/rapids/notebooks/contrib/

-v /home/rapids/data/:/home/dell/rapids/data/

nvcr.io/nvidia/rapidsai/rapidsai:0.10-cuda10.1-runtime-ubuntu18.04

2. Launch the dask-scheduler on the primary compute node

$ dask-scheduler --port=8888 --bokeh-port 8786

output:

distributed.scheduler - INFO - Receive client connection: Client-9ad22140-

83bd-11e9-823c-246e96b3e316

distributed.core - INFO - Starting established connection

3. Launch dask-cuda-worker on the primary compute node

This step will start workers at the same Primary machine as the scheduler was started

$ dask-cuda-worker tcp://<ip_primary_node>:8888

output:..... messages with successful connection

4. Launch dask-cuda-worker on the secondary compute node

This step will start additional workers on the secondary compute node

$ dask-cuda-worker tcp://<ip_primary_node>:8888

output:.. messages with successful connection

5. Start Jupyter and run the notebook (client python API) on the primary compute node

In this case, the NYC-Taxi notebook is the Client Python API which will be attached to the scheduler

running on the primary compute node, so it can be run using all compute node GPUs in distributed

mode. To do so, we need to modify the notebook, starting the client and providing the primary node

IP and port designated to be listened as below:
client = Client('tcp://<ip_primary_node>:8888') #connect to cluster

output:

Client

Scheduler: tcp://<ip_primary_node>:8888

Dashboard: http://<ip_primary_node>:8786/status

Cluster

Workers: 8 # total workers in distributed mode

Cores: 8

Memory: 67.47 GB

Bios Settings to Boost Performance

31 RAPIDS Scaling on Dell EMC PowerEdge Servers

I Bios Settings to Boost Performance

Bios Settings to Boost Performance

32 RAPIDS Scaling on Dell EMC PowerEdge Servers

Common Errors

33 RAPIDS Scaling on Dell EMC PowerEdge Servers

J Common Errors

During the tests we experimented GPU device memory issues, for more details on the memory

performance and issues we encountered please see the section A “Controlling memory usage”. These

errors have been documented and explained by NVIDIA [10] as below:

“Running out of GPU Device Memory:

• ETL processes may create many copies of data in device memory, resulting in memory utilization

spikes

• Need to budget 25% GPU device memory to account for XGBoost overhead

• Cannot exceed 24GB on 32GB GPU, or cannot exceed 12GB on 16GB GPU

• Memory utilization which exceeds available device resources will cause a Dask worker to crash

• This error can be propagated forward in the Dask task graph, and manifest in very short ETL times

(sub-millisecond timescale)

• An error may be raised by another routine referring to None Type in data or similar

Running out of system memory:

• “The final step of the ETL process migrates all computed results back to system memory before

training, and if you do not have sufficient system memory, your program will crash. The step before

training migrates a portion of the data back into device memory for XGBoost to train against”

Technical Resources

34 RAPIDS Scaling on Dell EMC PowerEdge Servers

K Technical Resources

https://rapids.ai/

https://www.dellemc.com/en-us/index.htm

https://www.dell.com/support/article/us/en/19/sln311501/high-performance-computing?lang=en

https://www.dellemc.com/en-us/servers/server-accelerators.htm

K.1 Related Resources

• [1] RAPIDS Datasets Homepage. https://console.cloud.google.com/storage/browser/anaconda-public-

data/nyc-taxi/csv

• [2] RMM: RAPIDS Memory Manager. https://github.com/rapidsai/rmm

• [3] Single Node Multi-GPU. https://xgboost.readthedocs.io/en/latest/gpu/#single-node-multi-gpu

• [4] Local Cluster. http://distributed.dask.org/en/latest/local-cluster.html

• [5] Dask and XGBoost. https://dask-ml.readthedocs.io/en/stable/examples/xgboost.html

• [6] XGBoost with Rapids – Nvidia webinar

• [7] Setting Dask in muti-node mode. https://docs.dask.org/en/latest/scheduling.html

• [8] Dask High Performance Computers https://docs.dask.org/en/latest/setup/hpc.html

• [9] Remote Data http://docs.dask.org/en/latest/remote-data-services.html#

• [10] Common Errors https://docs.rapids.ai/containers/rapids-demo#common-errors

• [11] Dask Worker Memory Management. http://distributed.dask.org/en/latest/worker.html#memory-

management

• [12] Dask Dashboard Walkthrough. http://distributed.dask.org/en/latest/web.html

• [13] RAPIDS NGC https://ngc.nvidia.com/catalog/containers/nvidia:rapidsai:rapidsai

© 2019 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell

Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners.

https://rapids.ai/
https://www.dellemc.com/en-us/index.htm
https://www.dell.com/support/article/us/en/19/sln311501/high-performance-computing?lang=en
https://www.dellemc.com/en-us/servers/server-accelerators.htm
https://console.cloud.google.com/storage/browser/anaconda-public-data/nyc-taxi/csv
https://console.cloud.google.com/storage/browser/anaconda-public-data/nyc-taxi/csv
https://github.com/rapidsai/rmm
https://xgboost.readthedocs.io/en/latest/gpu/#single-node-multi-gpu
http://distributed.dask.org/en/latest/local-cluster.html
https://dask-ml.readthedocs.io/en/stable/examples/xgboost.html
https://docs.dask.org/en/latest/scheduling.html
https://docs.dask.org/en/latest/setup/hpc.html
http://docs.dask.org/en/latest/remote-data-services.html
https://docs.rapids.ai/containers/rapids-demo#common-errors
http://distributed.dask.org/en/latest/worker.html#memory-management
http://distributed.dask.org/en/latest/worker.html#memory-management
http://distributed.dask.org/en/latest/web.html
https://ngc.nvidia.com/catalog/containers/nvidia:rapidsai:rapidsai

