
© 2019 Dell Inc. or its subsidiaries.

Whitepaper

Exploring Intel®QAT on

MX series blade servers
Computing offloads for encryption and compression

Andy Butcher, Technical Staff, Server Advanced Engineering, Dell EMC

Gordon McFadden, Lead Architect, Intel® QuickAssist Technology

Abstract

Integrated Intel® QuickAssist Technology on the MX blade servers provides beneficial CPU offloads

for encryption and compression operations. Quantitative examples are described, including

information on how to enable and use this feature of the chipset.

Executive Summary

Workload performance is important to Enterprise IT customers. Whether running web servers,

distributed storage, data analytics, cloud services, or any custom application, computing

performance affects both user satisfaction and cost of ownership. General purpose CPUs are

very good at most operations necessary for these workloads. However, some operations can be

executed faster by custom-designed circuitry. The cost and benefit tradeoff sometimes makes

a compelling case for the usage of accelerator peripherals. Common accelerator peripherals

include FPGAs (field programmable gate arrays) and GPUs (graphics processing units).

This paper discusses the Intel® QuickAssist Technology (Intel® QAT) peripheral.

2 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

Table of contents

1. Introduction .. 3

1.1 Encryption and Key Generation ... 3

1.2 Data Compression and Decompression .. 3

1.3 Software Licenses for Intel® QAT in PowerEdge MX ... 3

1.4 Software .. 4

2. Intel® QAT on MX7000 ... 5

2.1 Lab Setup .. 5

3. Example 1 – Compression ... 6

3.1 Background – Platform Hardware and Capability .. 6

3.2 Software Features – QATzip .. 6

3.3 Programming Example .. 7

3.4 Example Software stack .. 8

3.5 Experiment Results ... 8

4. Example 2 – IPsec ... 9

4.1 Lab Setup .. 9

4.2 IPSec Performance Results .. 9

5. Conclusion ... 10

6. Appendices .. 10

6.1 Qzip and Gzip commands ... 10

6.2 Example installation using yum – QAT and QATzip ... 10

6.3 Server Setup for Traffic Generator .. 11

6.4 Server Setup for the Tunneling Server .. 12

6.5 VPP Configurations For OpenSSL .. 13

6.6 VPP Configurations For AESNI ... 14

6.7 VPP Configurations For Intel® QAT ... 15

6.8 VPP Common IPSec Configuration for OpenSSL/AESNI/Intel® QAT .. 16

6.9 VPP Common Settings – Huge Pages .. 17

6.10 Trex Configuration File .. 17

7. Acknowledgements .. 18

8. References ... 18

3 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

1. Introduction
PowerEdge MX is the first Dell EMC server to offer a software licensing option to enable Intel® QuickAssist Technology.

It provides a software-enabled foundation for security, authentication, and compression, and significantly increases the

performance and efficiency of standard platform solutions. This paper will explore uses of Intel® QAT with two examples.

1.1 Encryption and Key Generation

Many users will be familiar with the “https” prefix on frequently-visited websites. Behind all of these secure websites

is an implementation of TLS (transport layer security) or its predecessor SSL (secure sockets layer). Each protocol entails

a “handshake” between the client and server that establishes authenticity of the server and creates a session key for

encrypting the exchanged data. These Public Key Encryption (PKE) algorithms, historically performed by software,

can be offloaded from the CPU into the Intel® QAT engine for providing significant performance gains for Web Server,

Content Delivery Networks, eCommerce, VPN, Firewall or Security Load Balancer and Wan Acceleration solutions.

1.2 Data Compression and Decompression

Users of compressed file formats will be familiar with the benefit of another function provided by Intel® QAT. Like

cryptography, compression and decompression can be compute-intensive functions. Intel® QuickAssist Technology

(Intel® QAT) is comprised of acceleration engines for data compression as well, yielding faster performance, lower latency

and higher throughput for software and systems that rely on compressed data such as storage, web compression,

big data, or high-performance computing (HPC).

Compressing data before it is stored on a hard drive provides the dual benefit of reducing the time to complete both writes

and subsequent reads, and increasing the amount of data that can be stored on the drive system.

Compressing data before transmission over a network improves overall network utilization by reducing the number

of TCP/UDP segments and as a result the number of IP packets. This allows more data to be sent and received

without the need to expand the network interfaces.

In both of these examples, the benefit is achieved by compressing and decompressing data before it is consumed

by a slower component in the compute infrastructure.

1.3 Software Licenses for Intel® QAT in PowerEdge MX

Intel® QAT has a long history with the deliveries of the 8920 model and the subsequent 8955 on PCIe cards. In the Intel®

Xeon® Processor Scalable Family, Intel® is making the next generation of Intel® QAT available with significantly improved

performance in a chipset-integrated version. Dell EMC is offering hardware-enabling licenses for chipset Intel® QAT on the

MX series blade servers (MX740c and MX840c). These licenses can be installed without the need to add hardware to the

system and occupy slots. Depending on the license level installed and the performance level desired, the chipset based

Intel® QAT will be programmed to offer the bandwidth performance as defined below, mimicking the performance of the

latest model 8960 and model 8970 PCIe cards. The licenses are installed through the iDRAC license manager.

QAT license Compression Encryption RSA

40G ‘mid-range’ 28 Gb/s 40 Gb/s 40K Ops/s

100G ‘top performance’ 65 Gb/s 100 Gb/s 100K Ops/s

4 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

1.4 Software

Software for the Intel® QuickAssist Technology is provided through the Intel open source site.1 The applicable drivers

are associated with the C62x chipset. Application and library examples are posted on 01.org along with the Quick Start

Guide API Programmer’s Guide and other useful collateral allowing users to build upon these open source libraries and

examples or build their own applications. Release notes identify operating system compatibility.

Alternatively, the software can be installed onto a Linux system with an RPM manager such as yum, as shown in

Appendix section 6.2. In this example, Intel® QAT and its companion application and library QATzip were installed.

1.4.1 DPDK (Data Plane Development Kit)

An open source project consisting of a set of libraries and drivers for fast packet processing, DPDK employs PMDs

(Poll Mode Drivers) to interact with user space software, avoiding latency expensive context switches between kernel and

user space. Instructions on installing the Intel® QAT PMD can be found on the DPDK web site.2 Using DPDK, performance

benefit has been demonstrated for IPsec (Internet Protocol Security), which provides security at a lower level in the

protocol stack than TLS. For further reading on IPSEC, see the Getting Started Guide3 and Sample application usage.4

1.4.2 Compression and Decompression

The primary vehicle for application development or application integration for data compression and decompression for

Linux and Windows Server is QATZip, which is a user space library that produces data in standard gzip format. See the

most recent release notes for the drivers and the API application guides for more information on data compression.

5 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

2. Intel® QAT on MX7000
This section includes several examples of Intel® QAT applications, but this list of potential uses of Intel® QAT is by no

means exhaustive. Drivers and APIs are available for custom applications that require encryption or compression.

Not included in this section is the NGINX web server, which has been integrated with Intel® QAT encryption and PKE

for superior performance measured in connections per second. Also, the commonly used encryption library Openssl

has been modified to utilize Intel® QAT.

2.1 Lab Setup

The basis for these experiments was the MX7000 series blade server product line. The blade chassis hosts eight

two-socket sleds in a 7U space, depicted in Figure 1. For the compression experiment, only one sled was necessary.

For the IPSec experiment, two blades were connected through the IOM (input/output module, which serves as the

aggregate networking switch for the blades in the chassis). In both cases, an MX740c was used, depicted in Figure 2.

It should be noted that there are many other beneficial applications of this technology, as stated (for example,

web server applications that offload key exchange and encryption).

Figure 1 – MX7000 chassis Figure 2 – MX740c

The pertinent internal connections are represented in Figure 3 and Figure 4. Each sled plugs in directly to the IOMs;

there is no midplane. This ensures signal integrity for speed upgrades well into the future. Fabric A was used as the

“east-west” connection between the two blades in the IPSec experiment.

Figure 3 – MX7000 components Figure 4 – Fabric A and B Interconnect

6 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

3. Example 1 – Compression

3.1 Background – Platform Hardware and Capability

The latest generation the Intel® QAT device provides three separate PCIe end-points, each with 10 compression/

decompression engines. In the Dell EMC MX740c, the device is integrated into the Intel® C62x Chipset Platform Hub

Controller (PCH) and is connected to the CPU with a 16-lane PCIe3 link. High speed DMA (Direct Memory Access)

transactions are used by the engines to transfer data. The compression engines support the creation of both static

and dynamic Huffman headers. Various search depths provide access to increased compression ratios. Both Adler32

checksum and the CRC32 hash are supported.

3.2 Software Features - QATzip

QATzip is built on the Intel® QAT software interface, providing additional features and capabilities, as well as being

focused on ease-of-use. QATzip initializes hardware resource on the first call, eliminating the need to initialize the QAT

device separately. If QATzip is installed on a platform that is not accelerated, it will seamlessly use software libraries to

provide compression services. This allows an operator to install a common software stack on a set of platforms with or

without Intel® QAT enabled. QATzip was designed to work in multithreaded environments, potentially with a large

number threads starting and stopping throughout a workload’s life cycle. To support multithreading, QATzip:

• intelligently acquires instance and memory resources each time a QATzip API is invoked. A single lightweight lock

is used to acquire resources.

On subsequent operations, the thread will attempt to acquire the same resources first. Thus, if there are fewer

threads than resources, then there will be no lock contention.

• Releases the lock on the instance and memory resource, allowing them to be used by a different thread.

• Registers a termination function, allowing the last thread that terminates to free the memory resources back to the

operating system, and release the Intel® QuickAssist Technology instances.

These actions allow a large number of threads to seamlessly and efficiently share a small number of endpoints

and engines.

For environments with high network traffic or file caching, where system memory contention is likely to occur, the memory

driver that ships with Intel® QAT can be configured to consume memory from allocated huge pages.

QATzip is optimized for larger files and can be configured to use software-based compression if the clear-text size is small

enough that the trip to the accelerator and back would outweigh the benefits of offloading the job to the accelerator.

By including RFC compliant gzip headers with extensions as illustrated in Figure 5, the QATzip library can effectively

perform parallel decompression on file portions, concurrently taking advantage of the multiple engines to provide

high data throughput.

Figure 5 – QATzip header extensions for increased decompression performance

During the compress operation, the input is divided into chunks – default size is 64 kilobytes – and passed to the

compression engine in parallel. Each gzip structure contains the source and destination size, meaning they can be

simultaneously decompressed. The extra header adds 12 bytes. In most circumstances, this does not materially impact

the compression ratio. This multi-gzip structure complies with RFC 1952 and is correctly decompressed by both QATzip

and software decompression utilities. QATzip can be configured to produce a single gzip header without the extension,

which is used in webservers, such as Nginx, for consumption by browsers.

7 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

3.3 Programming Example

The QATzip has been carefully designed to provide a simple programming API. The following code segment is complete:

As can be seen, there is no explicit requirement to initialize

access to hardware. This is taken care of in the first

QATzip API call.

Applications can explicitly initiate and setup the QATzip

library to configure specific session parameters used in

the compress and decompress calls. Examples are

shown in Table 1.

Parameter Range Default Notes

Huffman

Encoding

Dynamic |

Static

Dynamic

Headers

None | gzip |

gzip with

extenstions

gzip with

extensions

Compression

Level

1-9

1

level nine invokes

a software compression

algorithm for the best

possible compression

ratio

Size of data

passed to

hardware

1 KB - 512 KB

64 KB

Min size for

hardware

128 bytes and

higher
1024 bytes no upper limit

Table 1 – Selected QATzip session parameters

Finally, the QATzip library includes its own allocation and free APIs – qzMalloc() and qzFree(). If appropriate,

an application can allocate memory that will be compressed or decompressed using these APIs. qzMalloc will returned

pinned memory if available. This will lead to improved latency as the data is already in DMA-friendly memory and will not

have to be copied. The qzCompress and qzDecompress APIs accept both pinned memory and regular memory without

the caller having to indicate which type is being used in a specific call.

[gmcfadde@localhost small]$ cat Makefile

INC_DIR=/opt/intel/QATzip/include/

smallQz: main.c

gcc -g -O0 -I$(INC_DIR) main.c -o smallQz -lqatzip

[gmcfadde@localhost small]$ cat main.c

#include <stdio.h>

#include <stdlib.h>

#include “qatzip.h”

int main(int argc, char *argv[])

{

int rc;

unsigned int i_len, o_len;

unsigned char *in, *out;

QzSession_T sess = {0};

i_len = 128*1024;

o_len = 128*1024;

in = malloc(i_len);

out = malloc(o_len);

if (NULL == in || NULL == out)

{

printf(“memory failure\n”); return 2;

}

rc = qzCompress(&sess, in, &i_len, out, &o_len, 1);

printf(“In len = %d, out len = %d, rc = %d\n”, i_len, o_len, rc);

return rc;

}

[gmcfadde@localhost small]$

[gmcfadde@localhost small]$ touch main.c

[gmcfadde@localhost small]$ make

gcc -g -O0 -I/opt/intel/QATzip/include/ main.c -o smallQz -lqatzip

[gmcfadde@localhost small]$./smallQz

In len = 131072, out len = 234, rc = 0

[gmcfadde@localhost small]$

8 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

3.4 Example Software stack

Figure 6 shows the integration of QAT into NGINX, providing both

encryption and compression for the web server. This diagram puts the

QATzip library in context, showing its relation to application software

and the driver.

3.5 Experiment Results

The results shown in Table 2, Figure 7, and Figure 8 were obtained on

an MX740c blade server with two Intel® Xeon® Gold 5117 CPUs running

at 2 GHz. There was 281GB of RAM on the machine, and files were

cached so disk operations would not skew the results. The operating

system was Red Hat Enterprise Linux 7.6. The files under test were

created from arbitrary data. Intel has already published results from

the Calgary Corpus dataset, so we chose to confirm performance

with randomly selected binary and text data,1 which was also useful in

creating large files so the performance could be easily observed over

an extended time. For the comparison, gzip performance was collected

alongside QATzip performance. We chose a compression level (4) that

offered the most similar ratios. The times were captured as the total of

“user” plus “system” time for the threads executing the compression.

Commands used are shown in Appendix section 6.1.

Figure 6 – QAT integration into the

NGINX web server

gzip/gunzip QATzip

Test file

Size

Comp. ratio

gzip

comp.

time(s)

gzip

decomp.

time (s)

comp.

ratio

qzip

comp.

time(s)

qzip

decomp.

time (s)

% accel.

file #1 1GB 1.86 16.76 5.89 1.87 1.75 1.08 89.6%

file #2 1GB 8.45 38.28 8.90 9.16 2.43 2.08 93.6%

file #3 1GB 1.25 43.17 9.61 1.26 2.59 2.29 94.0%

file #4 1GB 1.03 39.74 6.46 1.03 2.71 2.32 93.2%

Table 2 – Compression and Decompression comparison between a software-only (CPU) operation vs. a QAT assisted operation

Figure 7 – Compression time comparison Figure 8 – Decompression time comparison

1 The exact content was less important in this experiment as investigating some variety of compressible vs. uncompressible data. For this, some .tar files for FPGA tool installers were used (not

compressible), and there was some text data (source code) mixed with the binary data. The data that was compressible is evident in the results.

9 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

Packet Size

(Bytes)

Data Rate

(With IPSec

OpenSSL) -

Gbps

Data Rate

(With IPSec

AESNI) -

Gbps

Data Rate

(With IPSec

Intel® QAT) -

Gbps

100 0.242 1.43 2.46

300 0.39 2.39 4.97

500 0.569 2.86 6.82

700 0.615 5.39 10.25

900 0.706 3.2 10.79

1100 0.735 4.34 14.81

1300 0.768 4.34 15.91

1400 0.745 3.78 17.24

4. Example 2 – IPsec
In this experiment, the performance benefit of offloading encryption to the Intel QAT device in a simulated VPN tunnel is

demonstrated. The tunneling machine, running VPP,6 was exercised with a traffic generator running TRex. To perform the

IPsec encryption, three methods were compared, employed by VPP at the tunnel: 1) openssl library without offload

2) Intel® AES-NI, and 3) Intel® QAT offload.

4.1 Lab Setup

Figure 10 shows the lab setup. The MX740c machines were configured as

follows:

• Tunneling Server: Intel® Xeon® Gold 5117 CPUs @ 2GHz, 30GB memory,

Intel® Ethernet 25G 2P XXV710 Mezzanine card, RHEL 7.6

• Traffic Generator: Intel® Xeon® Gold 6146 CPUs @ 3.2GHz, 376GB memory,

Intel® Ethernet 25G 2P XXV710 Mezzanine card, RHEL 7.6

The p1p1 and p1p2 are attached to Fabric A1 and A2 switches respectively in

the MX7000 chassis.

The configuration files and procedures for this experiment are detailed in

the Appendices, and additional reference material and links are listed in the

References section.

Figure 9 – Test setup for the IPsec

performance measurement

4.2 IPSec Performance Results

This section provides summary of results observed. The graph in Figure 9 shows that the benefit of offload, measured by

the data throughput per second, increased with packet size. This is intuitive because the overhead of the offload operation

is incurred more times per unit of data with the smaller packets. The figures measured by TRex are reported in Table 3.

Figure 10 – IPsec tunnel performance for encryption options Table 3 – Resulting data throughput for various

encryption calculation methods

10 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

5. Conclusion
Acceleration and offload functions of Intel® QuickAssist Technology (QAT) demonstrated in this paper are encryption/

decryption and compression/decompression. IPsec tunneling was used as a workload to show the benefit of encryption

and decryption offload. QATzip was used to demonstrate the performance of accelerated compression

and decompression. In both cases, faster performance was offered by offloading operations onto the QAT engines.

Other workloads not shown are also beneficiaries of this technology, including web server applications.

6. Appendices

6.1 Qzip and Gzip commands

gzip -4 -k ‘”$filename”

gunzip -f ‘”$filename”

qzip -L 4 -k ‘”$filename”

qzip -d -k ‘”$filename”

6.2 Example installation using yum – QAT and QATzip

root@gm-fed-28 ~]# cat /etc/yum.repos.d/intel-qat.repo

[intel-qat]

name=Intel QAT

baseurl=https://download.01.org/QAT/repo/

gpgcheck=0

[root@gm-fed-28 ~]# yum install QATzip

Dependencies resolved.

==

Package Arch Version Repository Size

==

Installing:

QATzip x86_64 0.2.5-02 intel-qat 40 k

Installing dependencies:

QAT x86_64 1.7.0-450b34 intel-qat 4.5 M

Transaction Summary

==

Install 2 Packages

…

Verifying : QATzip-0.2.5-02.x86_64 1/2

Verifying : QAT-1.7.0-450b34.x86_64 2/2

Installed:

QATzip.x86_64 0.2.5-02 QAT.x86_64 1.7.0-450b34

Complete!

[root@gm-fed-28 ~]#

11 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

6.3 Server Setup for Traffic Generator

The section describes the steps required to run TRex on the traffic generating server. See links for additional information

on DPDK and getting started with IPsec.9 There is additional reference material for TRex online.10

1. Disable the network ports being used for DPDK:

cd /etc/sysconfig/network-scripts

ifdown p1p1

ifdown p1p2

service network restart

2. Download and untar DPDK in directory “dpdk”.

cd /home/dell

git clone http://dpdk.org/git/dpdk

3. Compile/Setup DPDK

cd /home/dell/dpdk

export DESTDIR=x86_64-native-linuxapp-gcc_destdir

make T=x86_64-native-linuxapp-gcc install -j100

4. Insert DPDK UIO driver into Kernel:

modprobe uio

insmod x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

5. Bind DPDK UIO module with PCI device. (Note: This step is generally not needed as Trex binds to DPDK itself

with information from its configuration file with specified PCIe ID’s.)

./usertools/dpdk-devbind.py -b igb_uio 0000:3b:00.0

./usertools/dpdk-devbind.py -b igb_uio 0000:3b:00.1

6. Generate Trex configuration file.

cd /home/dell/trex-core/scripts

./dpdk_setup_ports.py -i

Follow the prompts to generate trex_cfg.yaml.

This file needs to be generated only once, or one can use the file generated already.

7. Open 2 Linux terminals

8. On First terminal, launch Trex Traffic generator:

cp -f trex_cfg.yaml /etc/

cd /home/dell/trex-core/scripts

./t-rex-64 --cfg /etc/trex_cfg.yaml -i

9. On 2nd terminal, launch Trex Console:

cd /root/my_home/trex-core/scripts

./trex-console

10. In Trex Console, execute following commands to start Trex traffic:

portattr -a --prom on

start -f qat_tests/udp_1pkt_simple_<payload_size>.py -m 25gbps -p 0 --force

stop -a

Where: payload_size varies from 100-1400 bytes.

Trex traffic files with it are already created within qat_tests directory.

11. Network traffic for each of the tests can be started and stopped with commands in previous step.

http://dpdk.org/git/dpdk

12 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

6.4 Server Setup for the Tunneling Server

The section describes the steps required to run VPP on Tunneling Server that performs the IPsec encryption.

A command line reference for VPP can be found online,11 with additional reference material from Intel.12

6.4.1 Install and Enable Intel® QAT

These steps enable Intel® QAT on then Server-Sun.

1. Check for PCI devices (information only)

[root@sun dell]# lspci | grep processor

60:00.0 Co-processor: Intel Corporation C62x Chipset QuickAssist Technology (rev 03)

61:00.0 Co-processor: Intel Corporation C62x Chipset QuickAssist Technology (rev 03)

62:00.0 Co-processor: Intel Corporation C62x Chipset QuickAssist Technology (rev 03)

2. Configure and compile QAT

cd /home/dell/qat

./configure --enable-icp-sriov=host

make -j10

make install

lspci -d:37c9 -k

3. Repeating Step 1 will show the Virtual Functions rendered by QAT install step (information only).

6.4.2 Set and Run VPP

These steps provide information on how to run VPP with OpenSSL, Intel AESNI and QAT.

1. Disable the network ports being used for the DPDK:

cd /etc/sysconfig/network-scripts

ifdown p1p1

ifdown p1p2

service network restart

2. Download and untar DPDK in directory “dpdk”.

cd /home/dell

git clone http://dpdk.org/git/dpdk

3. Compile/Setup DPDK

cd /home/dell/dpdk

export DESTDIR=x86_64-native-linuxapp-gcc_destdir

make T=x86_64-native-linuxapp-gcc install -j100

4. Insert DPDK UIO driver into Kernel:

modprobe uio

insmod x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

5. Bind DPDK UIO module with PCI device:

./usertools/dpdk-devbind.py -b igb_uio 0000:3b:00.0

./usertools/dpdk-devbind.py -b igb_uio 0000:3b:00.1

Bind QAT VF’s to DPDK:

./usertools/dpdk-devbind.py -b igb_uio 0000:60:01.0

./usertools/dpdk-devbind.py -b igb_uio 0000:61:01.0

http://dpdk.org/git/dpdk

13 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

6.4.3 Run VPP with OpenSSL

To run VPP with OpenSSL, on a Linux Shell, execute:

vpp -c vpp_config_hw.txt_withIPSec_withopenssl_works

6.4.4 Run VPP with Intel AES-NI (AES New Instructions set for x86 Processors)

To run VPP with AESNI, on a Linux Shell, execute:

vpp -c vpp_config_hw.txt_withIPSec_withaesni_works

6.4.5 Run VPP with QAT

To run VPP with QAT, on a Linux Shell, execute:

vpp -c vpp_config_hw.txt_withIPSec_withQAT_works

6.5 VPP Configurations For OpenSSL

unix {

exec /home/dell/vpp_manual_cfgs/vpp_with_ipsec/vpp_config_with_ipsec.txt

nodaemon

cli-listen /run/vpp/cli.sock

log /tmp/vpp.log

interactive

}

cpu {

main-core 6

corelist-workers 2,4

}

dpdk {

socket-mem 2048,2048

log-level debug

no-tx-checksum-offload

dev default{

num-tx-desc 1024

num-rx-desc 1024

}

dev 0000:3b:00.0

{

workers 0

}

dev 0000:3b:00.1

{

workers 1

}

}

ip {

}

#dev 0000:60:01.0

#dev 0000:61:01.0

num-mbufs 370000

no-multi-seg

heap-size 2G

14 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

6.6 VPP Configurations For AESNI

unix {

exec /home/dell/vpp_manual_cfgs/vpp_with_ipsec/vpp_config_with_ipsec.txt

nodaemon

cli-listen /run/vpp/cli.sock

log /tmp/vpp.log

interactive

}

cpu {

main-core 6

corelist-workers 2,4

}

dpdk {

socket-mem 2048,2048

log-level debug

no-tx-checksum-offload

dev default{

num-tx-desc 1024

num-rx-desc 1024

}

dev 0000:3b:00.0

{

workers 0

}

dev 0000:3b:00.1

{

workers 1

}

#dev 0000:60:01.0

#dev 0000:61:01.0

vdev crypto_aesni_mb0

}

ip {

}

num-mbufs 370000

no-multi-seg

heap-size 2G

15 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

6.7 VPP Configurations For Intel® QAT

unix {

exec /home/dell/vpp_manual_cfgs/vpp_with_ipsec/vpp_config_with_ipsec.txt

nodaemon

cli-listen /run/vpp/cli.sock

log /tmp/vpp.log

interactive

}

cpu {

main-core 6

corelist-workers 2,4

}

dpdk {

socket-mem 2048,2048

log-level debug

no-tx-checksum-offload

dev default{

num-tx-desc 1024

num-rx-desc 1024

}

dev 0000:3b:00.0

{

workers 0

}

dev 0000:3b:00.1

{

workers 1

}

dev 0000:60:01.0

dev 0000:61:01.0

}

ip {

}

num-mbufs 370000

no-multi-seg

heap-size 2G

16 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

set interface ip address TwentyFiveGigabitEthernet3b/0/1 10.10.1.1/24

set interface ip address TwentyFiveGigabitEthernet3b/0/0 10.10.2.1/24

set ip arp TwentyFiveGigabitEthernet3b/0/1 10.10.1.2 24:6e:96:9c:e5:df

set ip arp TwentyFiveGigabitEthernet3b/0/0 10.10.2.2 24:6e:96:9c:e5:de

ipsec spd add 1

ipsec spd add 2

set interface ipsec spd TwentyFiveGigabitEthernet3b/0/1 1

set interface ipsec spd TwentyFiveGigabitEthernet3b/0/0 2

set int promiscuous on TwentyFiveGigabitEthernet3b/0/1

set int promiscuous on TwentyFiveGigabitEthernet3b/0/0

ipsec sa add 10 spi 1000 esp tunnel-src 10.10.2.1 tunnel-dst 10.10.2.2 crypto-key 4339314b55523947594d6d35476

66b45 crypto-alg aes-cbc-128 integ-key 4339314b55523947594d6d3547666b45 integ-alg sha1-96

ipsec policy add spd 1 outbound priority 100 action protect sa 10 remote-ip-range 16.0.0.0-16.255.255.255

ipsec sa add 11 spi 1001 esp tunnel-src 10.10.1.1 tunnel-dst 10.10.1.2 crypto-key 4339314b55523947594d6d35476

66b45 crypto-alg aes-cbc-128 integ-key 4339314b55523947594d6d3547666b45 integ-alg sha1-96

ipsec policy add spd 2 outbound priority 100 action protect sa 11 remote-ip-range 48.0.0.0-48.255.255.255

ipsec policy add spd 1 outbound priority 90 protocol 50 action bypass

ipsec policy add spd 2 outbound priority 90 protocol 50 action bypass

ip route add 16.0.0.0/8 via 10.10.1.2 TwentyFiveGigabitEthernet3b/0/1

ip route add 48.0.0.0/8 via 10.10.2.2 TwentyFiveGigabitEthernet3b/0/0

set interface state TwentyFiveGigabitEthernet3b/0/1 up

set interface state TwentyFiveGigabitEthernet3b/0/0 up

6.8 VPP Common IPSec Configuration for OpenSSL/AESNI/Intel® QAT

17 | QAT Whitepaper
© 2019 Dell Inc. or its subsidiaries.

Configure Huge Pages for VPP

Contents of file: /etc/sysctl.d/80-vpp.conf

Number of 2MB hugepages desired

#vm.nr_hugepages=1024

vm.nr_hugepages=4096

Must be greater than or equal to (2 * vm.nr_hugepages).

#vm.max_map_count=3096

vm.max_map_count=9216

All groups allowed to access hugepages

vm.hugetlb_shm_group=0

Shared Memory Max must be greater or equal to the total size of hugepages.

For 2MB pages, TotalHugepageSize = vm.nr_hugepages * 2 * 1024 * 1024

If the existing kernel.shmmax setting (cat /sys/proc/kernel/shmmax)

is greater than the calculated TotalHugepageSize then set this parameter

to current shmmax value.

#kernel.shmmax=2147483648

kernel.shmmax=8589934592

Also use:

/etc/vpp/startup.conf

No changes were made to this file.

Contents of file: /etc/trex_cfg.yaml

Config file generated by dpdk_setup_ports.py ###

- version: 2

interfaces: [‘3b:00.0’, ‘3b:00.1’]

port_info:

- ip: 10.10.2.2

default_gw: 10.10.2.1

- ip: 10.10.1.2

default_gw: 10.10.1.1

platform:

master_thread_id: 0

latency_thread_id: 1

dual_if:

- socket: 0

threads: [2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46]

This file was generated using:

cd /home/dell/trex-core/scripts

./dpdk_setup_ports.py -i

6.9 VPP Common Settings – Huge Pages

6.10 Trex Configuration File

7. Acknowledgements
This paper would not have been possible without the capable efforts of Imran Masud.

8. References
1 https://01.org/intel-quickassist-technology

2 https://doc.dpdk.org/guides/cryptodevs/qat.html

3 https://software.intel.com/en-us/articles/get-started-with-ipsec-acceleration-in-the-fdio-vpp-project

4 https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.html

5 https://www.ietf.org/rfc/rfc1952.txt

6 https://fd.io/technology/

7 https://wiki.fd.io/view/TRex

8 https://www.dpdk.org/

9 https://software.intel.com/en-us/articles/get-started-with-ipsec-acceleration-in-the-fdio-vpp-project

10 https://github.com/cisco-system-traffic-generator/trex-core/blob/master/doc/trex_book.asciidoc

11 https://wiki.fd.io/view/VPP/Command-line_Interface_(CLI)_Guide

12 https://software.intel.com/en-us/articles/build-a-fast-network-stack-with-vpp-on-an-intel-architecture-server

© 2019 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc.
or its subsidiaries. Other trademarks may be trademarks of their respective owners.

https://01.org/intel-quickassist-technology
https://doc.dpdk.org/guides/cryptodevs/qat.html
https://software.intel.com/en-us/articles/get-started-with-ipsec-acceleration-in-the-fdio-vpp-project
https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.html
https://www.ietf.org/rfc/rfc1952.txt
https://fd.io/technology/
https://wiki.fd.io/view/TRex
https://www.dpdk.org/
https://software.intel.com/en-us/articles/get-started-with-ipsec-acceleration-in-the-fdio-vpp-project
https://github.com/cisco-system-traffic-generator/trex-core/blob/master/doc/trex_book.asciidoc
https://wiki.fd.io/view/VPP/Command-line_Interface_(CLI)_Guide
https://software.intel.com/en-us/articles/build-a-fast-network-stack-with-vpp-on-an-intel-architecture-server

