

ID-463

© 2021 Dell Inc. or its subsidiaries.

Whitepaper

Overview

Introduction to iDRAC Delegated Authorization
This white paper provides an overview of iDRAC Delegated Authorization. It
explains Delegated Authorization and how it addresses the limitations with the
current iDRAC web-based authorization architecture. It provides a solution
overview and briefly describes the OAuth 2.0 authorization framework along with
some key terminology from the perspective of an iDRAC.

May 2021

Table of contents

Introduction to Delegated Authorization .. 3

Limitations with the legacy architecture .. 3

Key terms for Delegated Authorization ... 4

Solution Overview ... 4

Summary/Conclusion .. 6

Introduction to Delegated Authorization

Delegated Authorization is a way to access REST APIs in a modern secure
manner. It is an important concept in modern HTTP APIs, with one of the most
popular implementations being the IETF standard for OAuth 2.0 (RFC 6749).
OAuth 2.0 is an industry-standard for handling web-based authorization and
offers excellent solutions to get HTTP services to interoperate in an elegant and
secure way.

Delegated auth does away with providing a username and password for every
device. Instead users can log into a centralized “Authorization server” and get
issued a “token”. These tokens can then be used on configured systems instead
of a username and password. There are several Enterprise level authorization
servers including Ping Identity, Microsoft ADFS, and open source solutions such
as Keycloak. These authorization servers allow a wide variety of authentication
services including AD and LDAP to suit consumers’ various needs.

Since Delegated Authorization does not involve sharing usernames or passwords
with clients, it provides enhanced security and remains unaffected by password
rotation schemes. This simplifies password rotation policies since new
passwords do not need to be “rolled out” to scripts or console applications.

Limitations with the legacy architecture

 With previous iDRAC releases, the only way to access iDRAC REST APIs was to
include a username and password as authentication for every HTTP request.
Optionally a username and password could be used to create a session, but the
initial credentials exchange was still required.

This is true for both iDRAC local user accounts as well as for directory services
such as Active Directory and LDAP. In both cases, the iDRAC must either handle
user credentials to perform authentication for local users, or handle AD/LDAP
user credentials to be passed over to AD/LDAP servers for authentication.

In a datacenter environment, scripts and console applications handle the remote
server management. Since usernames and passwords are required for all
iDRAC REST APIs, these scripts and applications need a username and
password to operate.

It is apparent that the legacy solution is not very secure and is fraught with
maintenance and scalability issues, some of which are outlined below.

Security
1. A security breach may result in denial-of-service attacks and loss of

sensitive customer data such as usernames and passwords.

2. The legacy back-end applications need to deal with user credentials for

storage, retrieval, and updates in a database.

3. User credentials may need to be transmitted over the network for

AD/LDAP configurations.

4. Inadvertent leakage of sensitive user information in troubleshooting logs

on proxies and servers etc.

5. Password rotation policies mandate client scripts and applications to be

updated on a periodic basis.

Maintenance/Scalability
1. User account creation and management.

2. iDRAC provides an array of fine-grained user privileges but not all of

them can be leveraged due to the limited number of local user

accounts that can be set up on the iDRAC.

3. In the scenario where there are multiple iDRAC’s to be configured, all

the user creation and management tasks need to be performed on a

per-iDRAC basis.

4. Maintain and enhance authentication modules to comply with the latest

security standards through application of patches etc.

Key terms for Delegated Authorization

Starting iDRAC version 4.20.20.00, iDRAC introduces support for Delegated
Authorization.

To configure iDRAC for Delegated Authorization, an iDRAC admin needs to
understand certain key OAuth 2.0 terminology. Initially, this terminology can be
difficult to grasp. To simplify things, this section briefly describes various key
OAuth 2.0 terms from an iDRAC perspective. In the next section, we will use
these terms in describing the basic workflow.

Client

A client is a third-party application, console, or script that accesses the iDRAC
REST APIs with the user’s consent.

Authorization Server

The Authorization Server is the only device that directly handles usernames and
passwords. It issues tokens to the client after successful user authentication.

Resource Server
The iDRAC is the Resource Server.

Resource Owner
The User is the Resource Owner.

Token
Tokens are used by iDRAC in place of usernames and passwords.

Offline Tokens
Tokens that Users provide to applications or scripts that can be used without
requesting consent from the User each time.

Solution Overview

To address limitations with the legacy architecture, it becomes imperative to
move to a centralized authorization solution and delegate authorization
responsibilities to specialized servers. These authorization servers are
specifically designed to provide user identity and access management solutions.

From an iDRAC perspective, the notion of Delegated Authorization is that a script
or console application (“Client”) can, on behalf of a user (“Resource Owner”),
obtain authorization from an "Authorization Server" in the form of a "token". This
token is then presented in a designated HTTP request header as part of API
accesses to the iDRAC (“Resource Server”). The token contains details about
the Authorization Server issuing the token, the iDRAC that this token is valid for,
and user details such as the username and privileges that the user should have
on the iDRAC.

Most importantly, the tokens are secure and trustworthy as they are signed by
the Authorization Server’s private encryption key. The public key is known to the
iDRAC and is therefore used to verify the authenticity of the tokens.

So, with Delegated Authorization a User (“Resource Owner”) delegates access to
the resources a user owns to a designated client application, without enabling the
client application to impersonate the user.

This means that an iDRAC user may enable a third-party client application to
invoke the iDRAC web API on users’ behalf without users having to share their
username and password with the client application. To avoid constant requests
for consent, a User may elect to provide the client with an “Offline Token”. A
client will exchange this offline token with the Authorization Server for a normal
token to access the iDRAC.

Fig 1

Initially iDRAC is configured to use Authorization Server’s public key.

Step 1: Client requests and obtains an access token on behalf of the user.
Step 2: Client specifies the access token on the API request.
Step 3: iDRAC validates token using the Authorization Server’s public key
Step 4: Client receives the response from the iDRAC.

Summary/Conclusion

Delegated Authorization greatly simplifies user account set up and access
management. A centralized user management system eliminates password
propagation and using short-lived tokens, the need to share credentials. No
longer are usernames and passwords passed to client applications or even the
iDRAC. Additionally, it provides users’ options to revoke client access as per
users’ needs. Once Delegated Auth is configured, iDRAC API access is
seamless using access token.

By providing centralized authentication and auditing, it enables users to focus on
their business workflows and bring security standards to the forefront regarding
user authorization and access. Delegated Auth is by far the most secure and
standard way to access iDRAC Remote Services.

