
Variant Calling Benchmark 
Not Only Human 

Variant call process refers to the identification of a nucleotide difference from reference sequences at a 

given position in an individual genome or transcriptome. It includes single nucleotide polymorphism 

(SNPs), insertion/deletions (indels) and structural variants. One of the most popular variant calling 

applications is GenomeAnalysisTK (GATK) from Broad Institute. Often this GATK is used with BWA to 

compose a variant calling workflow focusing on SNPs and indels. After we published Dell HPC System for 

Genomics White Paper last year, there were significant changes in GATK. The key process, variant call 

step UnifiedGenotyper is no longer recommended in their best practice. Hence, here we recreate BWA-

GATK pipeline according to the recommended practice to test whole genome sequencing data from 

mammals and plants in addition to human’s whole genome sequencing data. This is a part of Dell’s 

effort to help customers estimating their infrastructure needs for their various genomics data loads by 

providing a comprehensive benchmark.  

Variant Analysis for Whole Genome Sequencing data 

System 
The detailed configuration is in Dell HPC System for Genomics White Paper, and the summary of system 

configuration and software is in Table 2. 

Table 1 Server configuration and software 

Component Detail 

Server 40x PowerEdge FC430 in FX2 chassis 

Processor Total of 1120 cores: Intel® Xeon® Dual E5-2695 v3 - 14 cores 

Memory 128GB - 8x 16GB RDIMM, 2133 MT/s, Dual Rank, x4 Data Width 

Storage 480TB IEEL (Lustre) 

Interconnect InfiniBand FDR 

OS Red Hat Enterprise 6.6 

Cluster Management tool Bright Cluster Manager 7.1 

Short Sequence Aligner BWA 0.7.2-r1039 

Variant Analysis GATK 3.5 

Utilities sambamba 0.6.0, samtools 1.2.1 

 

BWA-GATK pipeline 
The current version of GATK is 3.5, and the actual workflow tested obtained from the workshop, ‘GATK 

Best Practices and Beyond’. In this workshop, they introduce a new workflow with three phases. 

• Best Practices Phase 1: Pre-processing 

• Best Practices Phase 2A: Calling germline variants 

• Best Practices Phase 2B: Calling somatic variants 

• Best Practices Phase 3: Preliminary analyses 

Here we tested out phase 1, phase 2A and phase3 for germline variant call pipeline. The details of 

commands used in benchmark are listed below.  

https://en.wikipedia.org/wiki/Transcriptome
https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
https://www.broadinstitute.org/gatk/
http://en.community.dell.com/techcenter/blueprints/blueprint_for_hpc/m/mediagallery/20441607
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Phase 1. Pre-processing 

Step 1. Aligning and Sorting 
bwa mem -c 250 -M -t [number of threads] -R ‘@RG\tID:noID\tPL:illumine\tLB:noLB\tSM:bar’ [reference chromosome] [read fastq 1] [read 

fastq 2] | samtools view -bu - | sambamba sort -t [number of threads] -m 30G --tmpdir [path/to/temp] -o [sorted bam output] /dev/stdin 

Step 2. Mark and Remove Duplicates  
sambamba markdup -t [number of threads] --remove-duplicates --tmpdir=[path/to/temp] [input: sorted bam output] [output: bam without 

duplicates] 

Step 3. Generate Realigning Targets 
 java -d64 -Xms4g -Xmx30g -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -nt [number of threads] -R [reference chromosome] -o [target 

list file] -I [bam without duplicates] -known [reference vcf file] 

Step 4. Realigning around InDel 
java -d64 -Xms4g -Xmx30g -jar GenomeAnalysisTK.jar -T IndelRealigner -R [reference chromosome] -I [bam without duplicates] -targetIntervals 

[target list file] -known [reference vcf file] -o [realigned bam] 

Step 5. Base Recalibration 
java -d64 -Xms4g -Xmx30g -jar GenomeAnalysisTK.jar -T BaseRecalibrator -nct [number of threads] -l INFO -R [reference chromosome] -I 

[realigned bam] -known [reference vcf file] -o [recalibrated data table] 

Step 6. Print Recalibrated Reads - Optional 
java -d64 -Xms8g -Xmx30g -jar GenomeAnalysisTK.jar -T PrintReads -nct [number of threads] -R [reference chromosome] -I [realigned bam] -

BQSR [recalibrated data table] -o [recalibrated bam] 

Step 7. After Base Recalibration - Optional 
java -d64 -Xms4g -Xmx30g -jar GenomeAnalysisTK.jar -T BaseRecalibrator -nct [number of threads] -l INFO -R [reference chromosome] -I 

[recalibrated bam] -known [reference vcf file] -o [post recalibrated data table] 

Step 8. Analyze Covariates - Optional 
java -d64 -Xms8g -Xmx30g -jar GenomeAnalysisTK.jar -T AnalyzeCovariates -R [reference chromosome] -before [recalibrated data table] -after 

[post recalibrated data table] -plots [recalibration report pdf] -csv [recalibration report csv] 

Phase 2. Variant Discovery – Calling germline variants 

Step 1. Haplotype Caller 
java -d64 -Xms8g -Xmx30g -jar GenomeAnalysisTK.jar -T HaplotypeCaller -nct [number of threads] -R [reference chromosome] -ERC GVCF -BQSR 

[recalibrated data table] -L [reference vcf file] -I [recalibrated bam] -o [gvcf output] 

Step 2. GenotypeGVCFs 
java -d64 -Xms8g -Xmx30g -jar GenomeAnalysisTK.jar -T GenotypeGVCFs -nt [number of threads] -R [reference chromosome] -V [gvcf output] -o 

[raw vcf] 

Phase 3. Preliminary Analyses  

Step 1. Variant Recalibration 
java -d64 -Xms512m -Xmx2g -jar GenomeAnalysisTK.jar -T VariantRecalibrator -R [reference chromosome] --input [raw vcf] -an QD -an DP -an FS 

-an ReadPosRankSum -U LENIENT_VCF_PROCESSING --mode SNP --recal_file [raw vcf recalibration] --tranches_file [raw vcf tranches] 

Step 2. Apply Recalibration 
java -d64 -Xms512m -Xmx2g -jar GenomeAnalysisTK.jar -T ApplyRecalibration -R [reference chromosome] -input [raw vcf] -o [recalibrated 

filtered vcf] --ts_filter_level 99.97 --tranches_file [raw vcf tranches] --recal_file [raw vcf recalibration] --mode SNP -U 

LENIENT_VCF_PROCESSING 

Job Scheduling 
Torque/Maui is used to manage a large number of jobs to process sequencing samples simultaneously. 

Optional steps, 6, 7 and 8 in phase 1 were not included in the benchmark since Step 6 PrintRead took 

12.5 hours with 9 threads for Bos Taurus sample (18 hours with single thread). These optional steps are 



not required, but these steps are useful for the reporting purpose. If it is necessary, it can be added as a 

side workflow to the main procedure. For each job, 9 cores were assigned when 120 concurrent jobs 

were processed concurrently and 13 cores were used for the test of 80 concurrent jobs. 

Data 
In addition to the benchmark for human whole genome sequencing data published in the whitepaper, 

we gathered cow, pig, two sub-species of rice (japonica and indica) and corn reference genomes from 

Illumina’s iGenome site and Ensembl database. Fortunately, reference variant call data exist as a 

standard VCF file format for human, cow and pig. A variant data for japonica rice were obtained from 

3000 Rice Genome on AWS and was modified according to the standard VCF file format. However, the 

chromosome coordinates in this VCF file do not match to the actual reference chromosome sequences, 

and we were not able to find matching version of reference variant information from public databases. 

For indica rice and corn, we gathered the variant information from Ensembl and converted them into a 

compatible VCF format. Whole genome sequencing data were obtained from European Nucleotide 

Archive (ENA). ENA Sample IDs in Table 1 are the identifiers allow to retrieve sequence data from the 

site. Although it is not ideal to test an identical input for large number of processes, it is not feasible to 

obtain large number of similar sample data from public databases.  

Table 2 WGS test data for the different species: * x2 indicates the data is paired end reads. ƚTest ID column represent identifiers 
for the sequence data used throughout the test. 

Species Test 
IDƚ 

ENA Sample 
ID 

Sample Base 
Count 

Single 
file Size 

x2* 

Reference 
Genome size 

(bp) 

Depth of 
Coverage 

Number of 
variants in 

Ref 

Homo sapiens (human) Hs1 ERR091571 42,710,459,638 17 GB x2 3,326,743,047 13x 3,152,430 

Hs2 ERR194161 171,588,070,386 54 GB x2 3,326,743,047 52x 

Bos Taurus (cow) Bt1 SRR1706031 82,272,305,762 35 GB x2 2,649,685,036 31x 93,347,258 

Bt2 SRR1805809 32,681,063,800 12 GB x2 2,649,685,036 12x 

Sus scrofa (pig) Ss1 SRR1178925 41,802,035,944 19 GB x2 3,024,658,544 14x 52,573,286 

Ss2 SRR1056427 24,901,150,040 10 GB x2 3,024,658,544 8x 

Oryza sativa 
(rice) 

japonica Osj SRR1450198 49,676,959,200 22 GB x2 374,424,240 132x 19,409,227 

indica Osi SRR3098100 12,191,702,544 4 GB x2 411,710,190 30x 4,538,869 

Zea mays (corn) Zm SRR1575496 36,192,217,200 14 GB x2 3,233,616,351 11x 51,151,183 

Benchmark Results 

Data Quality 
After mapping and sorting of the sequence input files, quality statistics were obtained from the output 

files of Phase 1, Step 1. SRR17060031 sample is from bovine gut metagenomics study and was not well 

mapped onto Bos taurus UMD3.1 reference genome from Ensembl as expected. The majority of DNAs 

from bovine gut is foreign and has different sequence composition. 

 

 

 

 

http://en.community.dell.com/techcenter/blueprints/blueprint_for_hpc/m/mediagallery/20441607
http://support.illumina.com/sequencing/sequencing_software/igenome.html
http://useast.ensembl.org/index.html
https://en.wikipedia.org/wiki/Variant_Call_Format
https://aws.amazon.com/public-data-sets/3000-rice-genome/
http://useast.ensembl.org/index.html
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena/data/view/ERR091571
http://grch37.ensembl.org/Homo_sapiens/Info/Annotation#assembly
http://www.ebi.ac.uk/ena/data/view/ERR194161
http://grch37.ensembl.org/Homo_sapiens/Info/Annotation#assembly
http://www.ebi.ac.uk/ena/data/view/SRR1706031
http://useast.ensembl.org/Bos_taurus/Info/Annotation
http://www.ebi.ac.uk/ena/data/view/SRR1805809
http://useast.ensembl.org/Bos_taurus/Info/Annotation
http://www.ebi.ac.uk/ena/data/view/SRR1178925
http://useast.ensembl.org/Sus_scrofa/Info/Annotation
http://www.ebi.ac.uk/ena/data/view/SRR1056427
http://useast.ensembl.org/Sus_scrofa/Info/Annotation
http://www.ebi.ac.uk/ena/data/view/SRR1450198
http://plants.ensembl.org/Oryza_sativa/Info/Annotation/#assembly
http://www.ebi.ac.uk/ena/data/view/SRR3098100
http://plants.ensembl.org/Oryza_indica/Info/Annotation/#assembly
http://www.ebi.ac.uk/ena/data/view/SRR1575496
http://plants.ensembl.org/Zea_mays/Info/Annotation/#assembly
https://en.wikipedia.org/wiki/Metagenomics


Table 3 Mapping qualities of sequence reads data; obtained by using ‘samtools flagstat’. ‘Total QC-passed reads’ is the number 
of reads passed the criteria of sequencing quality. Among all QC-passed reads, the number of reads actually mapped on a 
reference genome and its percentage is on ‘Mapped reads (%)’ column. ‘Paired in sequencing’ column is the number of paired 
reads properly paired by a sequencer. Among the reads properly paired in sequencing, the number of those paired reads 
mapped on a reference genome as paired reads is listed in ‘Properly paired (%) in mapping. 

Species Sequencing 
Reads 

Test 
ID 

Total QC-passed 
reads 

Mapped reads (%) Paired in 
sequencing 

Properly paired (%) in 
mapping 

Human ERR091571 Hs1 424,118,221 421,339,198 (99.34%) 422,875,838 412,370,120 (97.52%) 

ERR194161 Hs2 1,691,135,957 1,666,486,126 (98.54%) 1,686,908,514 1,621,073,394 (96.10%) 

Cow SRR1706031 Bt1 813,545,863 29,291,792 (  3.60%) 813,520,998 28,813,072 (  3.54%) 

SRR1805809 Bt2 327,304,866 316,654,265 (96.75%) 326,810,638 308,600,196 (94.43%) 

Pig SRR1178925 Ss1 416,854,287 379,784,341 (91.11%) 413,881,544 344,614,170 (83.26%) 

SRR1056427 Ss2 249,096,674 228,015,545 (91.54%) 246,546,040 212,404,874 (86.15%) 

Rice SRR1450198 Osj 499,853,597 486,527,154 (97.33%) 496,769,592 459,665,726 (92.53%) 

SRR3098100 Osi 97,611,519 95,332,114 (97.66%) 96,759,544 86,156,978 (89.04%) 

Corn SRR1575496 Zm 364,636,704 358,393,982 (98.29%) 361,922,172 315,560,140 (87.19%) 

The rest of samples were properly aligned on the reference genome with high quality; more than 80% of 

reads paired in sequencing data properly mapped as pairs on reference genomes. 

It is also important to check what level of mismatches exists in the aligning results. The estimated 

variance in human genome is one in every 1,200 to 1,500 bases. This makes 3 million base differences 

between any two people randomly picked. However, as shown in Table 4, the results are not quite 

matched to the 3 million base estimation. Ideally, 36 million mismatches should be shown in Hs1 data 

set since it covers the human reference genome 13 times. However, the rate of mismatches is quite 

higher than the estimation, and at least one out of two variants reported by the sequencing might be an 

error.  

Table 4 The number of reads are perfectly mapped on a reference genome and the number of reads do not 

Test 
ID 

Depth Mapped reads Number of reads mapped with mismatches (mm) 

Perfect match 
(%) 

One mm (%) Two mm 
(%) 

Three mm 
(%) 

Four mm 
(%) 

Five mm 
(%) 

Hs1 13x 421,339,198 328,815,216 
(78.0) 

53,425,338 
(12.7) 

13,284,425 
(3.2) 

6,842,191 
(1.6) 

5,140,438 
(1.2) 

4,082,446 
(1.0) 

Hs2 52x 1,666,486,126 1,319,421,905 
(79.2) 

201,568,633 
(12.1) 

47,831,915 
(2.9) 

24,862,727 
(1.5) 

19,052,800 
(1.1) 

15,568,114 
(0.9) 

Bt1 31x 29,291,792 25,835,536 
(88.2) 

2,684,650 
(9.2) 

338,781 
(1.2) 

147,841 
(0.5) 

89,706 
(0.3) 

70,789 
(0.24) 

Bt2 12x 316,654,265 158,463,463 
(50.0) 

68,754,190 
(21.7) 

29,544,252 
(9.3) 

17,337,205 
(5.5) 

12,639,289 
(4.0) 

10,015,029 
(3.2) 

Ss1 14x 379,784,341 228,627,231 
(60.2) 

69,912,403 
(18.4) 

29,142,572 
(7.7) 

16,701,248 
(4.4) 

11,036,852 
(2.9) 

7,652,513 
(2.0) 

Ss2 8x 228,015,545 112,216,441 
(49.2) 

53,739,562 
(23.6) 

25,132,226 
(11.0) 

13,874,636 
(6.1) 

8,431,144 
(3.7) 

5,375,833 
(2.4) 

Osj 132x 486,527,154 208,387,077 
(42.8) 

113,948,043 
(23.4) 

61,697,586 
(12.7) 

37,520,642 
(7.7) 

23,761,302 
(4.9) 

15,370,422 
(3.2) 

Osi 30x 95,332,114 54,462,837 
(57.1) 

17,325,526 
(18.2) 

8,190,929 
(8.6) 

5,146,096 
(5.4) 

3,394,245 
(3.6) 

2,322,355 
(2.4) 

Zm 11x 358,393,982 150,686,819 
(42.1) 

82,912,817 
(23.1) 

44,823,583 
(12.5) 

28,375,226 
(7.9) 

19,093,235 
(5.3) 

12,503,856 
(3.5) 

 

http://www.ebi.ac.uk/ena/data/view/ERR091571
http://www.ebi.ac.uk/ena/data/view/ERR194161
http://www.ebi.ac.uk/ena/data/view/SRR1706031
http://www.ebi.ac.uk/ena/data/view/SRR1805809
http://www.ebi.ac.uk/ena/data/view/SRR1178925
http://www.ebi.ac.uk/ena/data/view/SRR1056427
http://www.ebi.ac.uk/ena/data/view/SRR1450198
http://www.ebi.ac.uk/ena/data/view/SRR3098100
http://www.ebi.ac.uk/ena/data/view/SRR1575496
http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp4_1.shtml


Time Measurement 
Total run time is the elapsed wall time from the earliest start of Phase 1, Step 1 to the latest completion 

of Phase 3, Step 2. Time measurement for each step is from the latest completion time of the previous 

step to the latest completion time of the current step as described in Figure 1.  

The running time for each data set is summarized in Table 4. Clearly the input size, size of sequence read 

files and reference genomes are the major factors affecting to the running time. The reference genome 

size is a major player for ‘Aligning & Sorting’ step while the size of variant reference affects most on 

‘HaplotypeCaller’ step. 

Table 5 running time for BWA-GATK pipeline 

Species Homo 
sapiens 
(human) 

Bos taurus 
(cow) 

Sus scrofa 
(pig) 

Oryza sativa (rice) Zea 
mays 
(corn) 

japonica Indica 

Depth of Coverage 13x 52x 31x 12x 14x 8x 132x 30x 11x 

Test ID Hs1 Hs2 Bt1 Bt2 Ss1 Ss2 Osj Osi Zm 

Total read size, gzip compressed (GB) 34 108 70 22 38 20 44 8 28 

Number of samples ran concurrently 80 80 120 80 120 80 120 80 80 

Run 
Time 
(hours) 

Aligning & Sorting 3.93 15.79 7.25 5.77 7.53 3.04 9.50 1.18 11.16 

Mark/Remove Duplicates 0.66 2.62 3.45 0.73 1.07 0.27 1.27 0.12 0.72 

Generate Realigning Targets 0.29 1.08 3.12 1.57 0.47 0.27 0.22 0.05 0.26 

Realign around InDel 2.50 8.90 4.00 3.15 2.87 1.83 7.37 1.25 3.18 

Base Recalibration 1.82 6.80 1.39 1.96 2.37 1.01 3.16 0.36 1.91 

HaplotypeCaller 4.52 10.28 2.75 9.33 26.21 14.65 8.95 1.77 16.72 

GenotypeGVCFs 0.03 0.03 0.20 0.05 0.34 0.06 1.12 0.01 0.04 

Variant Recalibration 0.67 0.37 0.32 0.86 0.58 0.56 0.92 0.04 0.46 

Apply Recalibration 0.04 0.04 0.03 0.06 0.03 0.08 0.03 0.01 0.05 

Total Run Time 14.5 45.9 22.5 23.5 41.5 21.8 32.5 4.78 34.5 

Number of Genomes per day 133 42 128 82 69 88 89 402 56 

 

Discussion 
The running time of the current version, GATK 3.5 is overly slower than the version of 2.8-1 we tested in 

our white paper. Particularly, HaplotypeCaller in the new workflow took 4.52 hours while 

UnifiedGenotyper in the older version took about 1 hour. Despite of the significant slow-down, GATK 

team believes HaplotypeCaller brings a better result, and that is worthy for the five times longer run. 

There are data issues in non-human species. As shown in Table 4, for the similar size of inputs, Hs1 and 

Ss1 show large difference in the running time. The longer running time in non-human species can be 

explained by the quality of reference data. Aligning and sorting process takes more than twice times in 

Figure 1 measuring the running time 



other mammals, and it became worse in plants. It is known that plants genomes contain large number of 

repeat sequences which make mapping process difficult. It is important to note that the shorter running 

time for HaplotypeCaller in rice does not reflect a real time since the size of the reference variant file 

was reduced significantly due to the chromosome length/position mismatches in the data. All the 

variant records outside of chromosome range were removed, but position mismatches were used 

without corrections. The smaller size of the reference variant information and wrong position 

information the running time of HaplotypeCaller shorter. Corn’s reference data is not any better in 

terms of the accuracy of these benchmark. These data errors are the major causes of longer processing 

time.  

Nonetheless, the results shown here could serve as good reference points for the worst case running 

time. Once reference data are cleaned up by researchers, the overall running time for other mammals 

should be similar to the one from Hs1 in Table 4 with a proper scaling of input size. However, it is hard 

to estimate an accurate running times for non-human species at this moment.  


